Bottom-Gated ZnO TFT Pressure Sensor with 1D Nanorods

Author:

Kim Ki-Nam,Ko Woon-San,Byun Jun-HoORCID,Lee Do-Yeon,Jeong Jun-Kyo,Lee Hi-Deok,Lee Ga-WonORCID

Abstract

In this study, a bottom-gated ZnO thin film transistor (TFT) pressure sensor with nanorods (NRs) is suggested. The NRs are formed on a planar channel of the TFT by hydrothermal synthesis for the mediators of pressure amplification. The fabricated devices show enhanced sensitivity by 16~20 times better than that of the thin film structure because NRs have a small pressure transmission area and causes more strain in the underlayered piezoelectric channel material. When making a sensor with a three-terminal structure, the leakage current in stand-by mode and optimal conductance state for pressure sensor is expected to be controlled by the gate voltage. A scanning electron microscope (SEM) was used to identify the nanorods grown by hydrothermal synthesis. X-ray diffraction (XRD) was used to compare ZnO crystallinity according to device structure and process conditions. To investigate the effect of NRs, channel mobility is also extracted experimentally and the lateral flow of current density is analyzed with simulation (COMSOL) showing that when the piezopotential due to polarization is formed vertically in the channel, the effective mobility is degraded.

Funder

Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education

Samsung Electronics

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research Progress of Vertical Channel Thin Film Transistor Device;Sensors;2023-07-23

2. Piezotronic Effect based ZnO Pressure Sensor with TFT Structures;2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM);2023-03-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3