The Radiative Transfer Characteristics of the O2 Infrared Atmospheric Band in Limb-Viewing Geometry

Author:

He Weiwei,Wu KuijunORCID,Feng Yutao,Fu Di,Chen Zhenwei,Li Faquan

Abstract

The O2(a1Δg) emission near 1.27 μm provides an important means to remotely sense the thermal characteristics, dynamical features, and compositional structures of the upper atmosphere because of its photochemistry and spectroscopic properties. In this work, an emission–absorption transfer model for limb measurements was developed to calculate the radiation and scattering spectral brightness by means of a line-by-line approach. The nonlocal thermal equilibrium (non-LTE) model was taken into account for accurate calculation of the O2(a1Δg) emission by incorporating the latest rate constants and spectral parameters. The spherical adding and doubling methods were used in the multiple scattering model. Representative emission and absorption line shapes of the O 2 ( a 1 Δ g , υ ′ = 0 ) → O 2 ( X Σ g 3 , υ ″ = 0 ) band and their spectral behavior varying with altitude were examined. The effects of solar zenith angle, surface albedo, and aerosol loading on the line shapes were also studied. This paper emphasizes the advantage of using infrared atmospheric band for remote sensing of the atmosphere from 20 up to 120 km, a significant region where the strongest coupling between the lower and upper atmosphere occurs.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3