Affiliation:
1. Chinese Academy of Sciences
Abstract
The mesopause–lower thermosphere (MLT) region is an important spatial region in the Earth’s atmosphere, making it a valuable area to investigate the temperature variations. Kirchhoff’s law fails with the altitude increase due to the non-local thermal equilibrium effect, resulting in an increase in the error of the method to retrieve the atmospheric temperature in the MLT region using the A-band spectral line intensity. In the non-LTE state, the temperature retrieval method based on the Einstein coefficients is proposed to retrieve atmospheric temperature in the 92–140 km height range using the airglow radiation intensity images obtained from the Michelson Interferometer for global high-resolution thermospheric imaging (MIGHTI) measurements. Results show that the temperature deviation of the two-channel combinations does not exceed 15 K in the altitude range of 92–120 km. This deviation increases up to 45 K when the altitude is in the range of 120–140 km due to the influence of the N2 airglow spectrum. The two-channel combinations self-consistency is increased by 85 K compared with the temperature obtained using the spectral line intensity retrieval. Additionally, the comparison of the retrieval results with the spectral line intensity method and the comparison with the atmospheric chemistry experiment Fourier transform spectrometer (ACE-FTS) temperature measurement data shows that the Einstein coefficient method is significantly more rational and accurate than the spectral line intensity method.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province
Youth Innovation Technology Project of Higher School in Shandong Province
Graduate Innovation Foundation of Yantai University
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献