Analysis of the Optimal Wavelength for Oceanographic Lidar at the Global Scale Based on the Inherent Optical Properties of Water

Author:

Chen ShuguoORCID,Xue Cheng,Zhang Tinglu,Hu LianboORCID,Chen Ge,Tang Junwu

Abstract

Understanding the optimal wavelength for detecting the water column profile from a light detection and ranging (lidar) system is important in the design of oceanographic lidar systems. In this research, the optimal wavelength for detecting the water column profile using a lidar system at the global scale was analyzed based on the inherent optical properties of water. In addition, assuming that the lidar system had a premium detection characteristic in its hardware design, the maximum detectable depth using the established optimal wavelength was analyzed and compared with the mixed layer depth measured by Argo data at the global scale. The conclusions drawn are as follows: first, the optimal wavelengths for the lidar system are between the blue and green bands. For the open ocean, the optimal wavelengths are between 420 and 510 nm, and for coastal waters, the optimal wavelengths are between 520 and 580 nm. To obtain the best detection ability using a lidar system, the best configuration is to use a lidar system with multiple bands. In addition, a 490 nm wavelength is recommended when an oceanographic lidar system is used at the global scale with a single wavelength. Second, for the recommended 490 nm band, a lidar system with the 4 attenuating length detection ability can penetrate the mixed layer for 80% of global waters.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3