SOLS: An Open-Source Spaceborne Oceanic Lidar Simulator

Author:

Zhang ZhenhuaORCID,Chen PengORCID,Mao ZhihuaORCID

Abstract

In recent years, oceanic lidar has seen a wide range of oceanic applications, such as optical profiling and detecting bathymetry. Furthermore, spaceborne lidars, CALIOP and ICESat-2, designed for atmospheric and ice science applications, have been used for ocean backscattering retrievals, but, until now, there has been no spaceborne lidar specifically designed for ocean detection. There is a demand for an effective lidar simulator to study the detection potential capability of spaceborne oceanic lidar. In this study, an open-source spaceborne oceanic lidar simulator named SOLS was developed, which is available freely. Moreover, the maximum detectable depth and corresponding optimal wavelength for spaceborne lidar were analyzed at a global scale by using SOLS. The factors controlling detection limits of a spaceborne ocean profiling lidar in different cases were discussed. Then, the maximum detectable depths with different relative measurement errors and the influence of solar background radiance were estimated. Subsequently, the effects of laser and detector parameters on maximum detectable depths were studied. The relationship between the lidar detectable depth and the ocean mixed layer depth was also discussed. Preliminary results show that the maximum detectable depth could reach deeper than 120 m in the oligotrophic sea at low latitudes. We found that 490 nm is the optimal wavelength for most of the open seawater. For coastal water, 532 nm is a more suitable choice considering both the technical maturity and geophysical parameters. If possible, a lidar equipped with 440 nm could achieve the greatest depth in oligotrophic seawater in subtropical gyres north and south of the equator. The upper mixed layer vertical structure in most of the global open ocean is within the lidar maximum detectable depth. These results show that SOLS can help the design of future spaceborne oceanic lidar systems a lot.

Funder

Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory

Zhejiang Natural Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3