Simulation and Design of an Underwater Lidar System Using Non-Coaxial Optics and Multiple Detection Channels

Author:

Chen Yongqiang12,Guo Shouchuan13,He Yan124,Luo Yuan1,Chen Weibiao1234,Hu Shanjiang1,Huang Yifan12,Hou Chunhe1,Su Sheng1

Affiliation:

1. Key Laboratory of Space Laser Communication and Detection Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China

2. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

3. School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China

4. Department of Guanlan Ocean Science Satellites, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China

Abstract

The efficacy of underwater laser detection is considerably impacted by the intense attenuation of light resulting from the scattering and absorption effects of water. In this study, we present the simulation and design of the underwater Lidar system that integrates the paraxial multi-channel detection strategy to enhance the dynamic range in subsea environments. To evaluate the performance of the system with multiple detection channels, we introduce a multi-channel underwater Lidar simulation (MULS) method based on the radiative transfer Lidar equations. Experimental validations were conducted under varied water conditions to assess the performance of the prototype and validate the simulation results. The measured range accuracy of each channel in the prototype is better than 0.1085 m, and the simulated and measured waveforms exhibit strong correlations, verifying the reliability and validity of the simulation method. The effects of transceiver configuration and the maximum detectable range of different detection methods were also discussed. Preliminary results indicate that the paraxial multi-channel design effectively suppresses near-field backscattering and substantially enhances the maximum detectable range. The findings presented in this study may provide valuable insights for the design and optimization of future underwater laser detection systems.

Funder

National Natural Science Foundation of China

Shanghai “Science and Technology Innovation Action Plan” Social Development Science and Technology Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3