Integrated Propulsion and Cabin-Cooling Management for Electric Vehicles

Author:

Ju FeiORCID,Murgovski NikolceORCID,Zhuang WeichaoORCID,Wang Liangmo

Abstract

This paper presents two nonlinear model predictive control (MPC) methods for the integrated propulsion and cabin-cooling management of electric vehicles. An air-conditioning (AC) model, which has previously been validated on a real system, is used to accomplish system-level optimization. To investigate the optimal solution for the integrated optimal control problem (OCP), we first build an MPC, referred to as a joint MPC, in which the goal is to minimize battery energy consumption while maintaining cabin-cooling comfort. Second, we divide the integrated OCP into two small-scale problems and devise a co-optimization MPC (co-MPC), where speed planning on hilly roads and cabin-cooling management with propulsion power information are addressed successively. Our proposed MPC methods are then validated through two case studies. The results show that both the joint MPC and co-MPC can produce significant energy benefits while maintaining driving and thermal comfort. Compared to regular constant-speed cruise control that is equipped with a proportion integral (PI)-based AC controller, the benefits to the battery energy earned by the joint MPC and co-MPC range from 2.09% to 2.72%. Furthermore, compared with the joint MPC, the co-MPC method can achieve comparable performance in energy consumption and temperature regulation but with reduced computation time.

Funder

Strategic Vehicle Research and Innovation Programme (FFI) of Sweden

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cooperative energy optimal control involving optimization of longitudinal motion, powertrain, and air conditioning systems;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2024-09-14

2. Distributed Model Predictive Controller For Thermal Energy Management System of Battery Electric Vehicles;2023 62nd IEEE Conference on Decision and Control (CDC);2023-12-13

3. Integrated optimization of kinematic and air-conditioning states for eco-driving and eco-cooling;2023 7th CAA International Conference on Vehicular Control and Intelligence (CVCI);2023-10-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3