Cooperative energy optimal control involving optimization of longitudinal motion, powertrain, and air conditioning systems

Author:

Zhang Yanbei1ORCID,Wei Mingliang2,Ren Meilin3,Liu Chongfan1,Han Mengwei1,Zhu Jingyu1

Affiliation:

1. School of Energy and Power Engineering, Dalian University of Technology, Dalian, China

2. Department of Engines, State Key Laboratory of Intelligent Agricultural Power Equipment, Luoyang, China

3. Testing Technology Innovation and Development Center, China Automotive Technology and Research Center, Tianjin, China

Abstract

This paper is concerned with the optimal control strategies for the longitudinal control, powertrain, and air conditioning (A/C) system of connected four-wheel hub-drive electric vehicles (EVs). A hierarchical control framework is developed to enhance the energy economy of the vehicle. Real-time connected information is utilized in the upper layer to determine the travel mode. Then, a multi-objective motion planning system (MOMPS) is proposed to plan the optimal acceleration trajectory. In the lower layer, an offline global optimization approach is employed to find the torque combinations that minimize the total power loss. The proposed A/C controller operates based on the bi-level model predictive control (Bi-level MPC) algorithm. A novel prediction model is developed to enable the A/C system to decrease energy consumption by leveraging the speed of the vehicle. The performance of the MOMPS is evaluated using urban test road data, demonstrating that the MOMPS can balance multiple objectives compared to global dynamic programing (Global DP) and the intelligent driver model (IDM). In addition, the proposed torque distribution strategy results in a 4.98% energy-savings rate through comparison with the even torque distribution strategy. Moreover, the A/C controller proposed in this paper can optimize energy consumption by 13.57% compared to a baseline strategy that maintains a constant setting.

Funder

Open Fund of State Key Laboratory of Intelligent Agricultural Power Equipment

Fundamental Research Funds for the Central Universities

Open Fund of State Key Laboratory of Engines of Tianjin University

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3