Adaptive Terminal Sliding Mode Control of Picking Manipulator Based on Uncertainty Estimation

Author:

Wu Caizhang,Zhang ShijieORCID

Abstract

In this paper, a robust nonsingular fast terminal sliding mode control scheme for the picking manipulator under the condition of load change and nonlinear friction disturbance is presented. Firstly, the dynamic equation of the picking manipulator under the condition of load change and nonlinear friction disturbance is established. Then, in order to avoid the singularity problem existing in the terminal sliding mode and improve the convergence time, a new nonsingular fast terminal sliding mode control strategy is adopted to design the control law of the picking manipulator, which can guarantee the finite time convergence. The adaptive law is used to estimate the uncertainties of the system, and the finite time convergence of the system state is proved by the Lyapunov criterion. In addition, the genetic algorithm is used to identify the friction parameters to realize the nonlinear friction compensation control of the system. Finally, the simulation results of the picking manipulator under different load conditions show that the controller designed in this paper realizes the fast and accurate positioning of the picking manipulator under load change and nonlinear friction, and the control strategy is reasonable and effective.

Funder

National Natural Science Foundation of China

The open project of Key Laboratory of Grain Information Processing and Control

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3