Abstract
This paper presents the design and implementation of a flexible manipulator formed of connected continuum kinematic modules (CKMs) to ease the fabrication of a continuum robot with multiple degrees of freedom. The CKM consists of five sequentially arranged circular plates, four universal joints intermediately connecting five circular plates, three individual actuated tension cables, and compression springs surrounding the tension cables. The base and movable circular plates are used to connect the robot platform or the neighboring CKM. All tension cables are controlled via linear actuators at a distal site. To demonstrate the function and feasibility of the proposed CKM, the kinematics of the continuum manipulator were verified through a kinematic simulation at different end velocities. The correctness of the manipulator posture was confirmed through the kinematic simulation. Then, a continuum robot formed with three CKMs is fabricated to perform Jacobian-based image servo tracking tasks. For the eye-to-hand (ETH) experiment, a heart shape trajectory was tracked to verify the precision of the kinematics, which achieved an endpoint error of 4.03 in Root Mean Square Error (RMSE). For the eye-in-hand (EIH) plugging-in/unplugging experiment, the accuracy of the image servo tracking system was demonstrated in extensive tolerance conditions, with processing times as low as 58±2.12 s and 83±6.87 s at the 90% confidence level in unplugging and plugging-in tasks, respectively. Finally, quantitative tracking error analyses are provided to evaluate the overall performance.
Subject
Control and Optimization,Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献