Land Use and Land Cover Mapping Using Sentinel-2, Landsat-8 Satellite Images, and Google Earth Engine: A Comparison of Two Composition Methods

Author:

Nasiri Vahid,Deljouei AzadeORCID,Moradi FardinORCID,Sadeghi Seyed Mohammad MoeinORCID,Borz Stelian AlexandruORCID

Abstract

Accurate and real-time land use/land cover (LULC) maps are important to provide precise information for dynamic monitoring, planning, and management of the Earth. With the advent of cloud computing platforms, time series feature extraction techniques, and machine learning classifiers, new opportunities are arising in more accurate and large-scale LULC mapping. In this study, we aimed at finding out how two composition methods and spectral–temporal metrics extracted from satellite time series can affect the ability of a machine learning classifier to produce accurate LULC maps. We used the Google Earth Engine (GEE) cloud computing platform to create cloud-free Sentinel-2 (S-2) and Landsat-8 (L-8) time series over the Tehran Province (Iran) as of 2020. Two composition methods, namely, seasonal composites and percentiles metrics, were used to define four datasets based on satellite time series, vegetation indices, and topographic layers. The random forest classifier was used in LULC classification and for identifying the most important variables. Accuracy assessment results showed that the S-2 outperformed the L-8 spectral–temporal metrics at the overall and class level. Moreover, the comparison of composition methods indicated that seasonal composites outperformed percentile metrics in both S-2 and L-8 time series. At the class level, the improved performance of seasonal composites was related to their ability to provide better information about the phenological variation of different LULC classes. Finally, we conclude that this methodology can produce LULC maps based on cloud computing GEE in an accurate and fast way and can be used in large-scale LULC mapping.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3