Winter Wheat Yield Estimation Based on Optimal Weighted Vegetation Index and BHT-ARIMA Model

Author:

Deng Qiuzhuo,Wu Mengxuan,Zhang Haiyang,Cui Yuntian,Li Minzan,Zhang Yao

Abstract

This study aims to use remote sensing (RS) time-series data to explore the intrinsic relationship between crop growth and yield formation at different fertility stages and construct a high-precision winter wheat yield estimation model applicable to short time-series RS data. Sentinel-2 images were acquired in this study at six key phenological stages (rejuvenation stage, rising stage, jointing stage, heading stage, filling stage, filling-maturity stage) of winter wheat growth, and various vegetation indexes (VIs) at different fertility stages were calculated. Based on the characteristics of yield data continuity, the RReliefF algorithm was introduced to filter the optimal vegetation index combinations suitable for the yield estimation of winter wheat for all fertility stages. The Absolutely Objective Improved Analytic Hierarchy Process (AOIAHP) was innovatively proposed to determine the proportional contribution of crop growth to yield formation in six different phenological stages. The selected VIs consisting of MTCI(RE2), EVI, REP, MTCI(RE1), RECI(RE1), NDVI(RE1), NDVI(RE3), NDVI(RE2), NDVI, and MSAVI were then fused with the weights of different fertility periods to obtain time-series weighted data. For the characteristics of short time length and a small number of sequences of RS time-series data in yield estimation, this study applied the multiplexed delayed embedding transformation (MDT) technique to realize the data augmentation of the original short time series. Tucker decomposition was performed on the block Hankel tensor (BHT) obtained after MDT enhancement, and the core tensor was extracted while preserving the intrinsic connection of the time-series data. Finally, the resulting multidimensional core tensor was trained with the Autoregressive Integrated Moving Average (ARIMA) model to obtain the BHT-ARIMA model for wheat yield estimation. Compared to the performance of the BHT-ARIMA model with unweighted time-series data as input, the weighted time-series input significantly improves yield estimation accuracy. The coefficients of determination (R2) were improved from 0.325 to 0.583. The root mean square error (RMSE) decreased from 492.990 to 323.637 kg/ha, the mean absolute error (MAE) dropped from 350.625 to 255.954, and the mean absolute percentage error (MAPE) decreased from 4.332% to 3.186%. Besides, BHT-ARMA and BHT-CNN models were also used to compare with BHT-ARIMA. The results indicated that the BHT-ARIMA model still had the best yield prediction accuracy. The proposed method of this study will provide fast and accurate guidance for crop yield estimation and will be of great value for the processing and application of time-series RS data.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference77 articles.

1. Progress and Perspectives on Agricultural Remote Sensing Research and Applications in China;Chen;J. Remote Sens.,2016

2. Remote sensing for agricultural applications: A meta-review

3. Nondestructive estimation of potato yield using relative variables derived from multi-period LAI and hyperspectral data based on weighted growth stage

4. Potential of UAV-Based Active Sensing for Monitoring Rice Leaf Nitrogen Status

5. Definition of Crop Condition and Crop Monitoring Using Remote Sensing;Yang;Trans. CSAE,1999

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3