Hyperspectral Anomaly Detection Using Deep Learning: A Review

Author:

Hu XingORCID,Xie Chun,Fan Zhe,Duan Qianqian,Zhang Dawei,Jiang Linhua,Wei Xian,Hong DanfengORCID,Li GuoqiangORCID,Zeng Xinhua,Chen WenmingORCID,Wu Dongfang,Chanussot JocelynORCID

Abstract

Hyperspectral image-anomaly detection (HSI-AD) has become one of the research hotspots in the field of remote sensing. Because HSI’s features of integrating image and spectrum provide a considerable data basis for abnormal object detection, HSI-AD has a huge application potential in HSI analysis. It is difficult to effectively extract a large number of nonlinear features contained in HSI data using traditional machine learning methods, and deep learning has incomparable advantages in the extraction of nonlinear features. Therefore, deep learning has been widely used in HSI-AD and has shown excellent performance. This review systematically summarizes the related reference of HSI-AD based on deep learning and classifies the corresponding methods into performance comparisons. Specifically, we first introduce the characteristics of HSI-AD and the challenges faced by traditional methods and introduce the advantages of deep learning in dealing with these problems. Then, we systematically review and classify the corresponding methods of HSI-AD. Finally, the performance of the HSI-AD method based on deep learning is compared on several mainstream data sets, and the existing challenges are summarized. The main purpose of this article is to give a more comprehensive overview of the HSI-AD method to provide a reference for future research work.

Funder

the national key research and development program

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3