The Potential of Sentinel-1A Data for Identification of Debris-Covered Alpine Glacier Based on Machine Learning Approach

Author:

Yao GuohuiORCID,Zhou XiaobingORCID,Ke ChangqingORCID,Drolma Lhakpa,Li HaidongORCID

Abstract

Microwave remote sensing is one of the main approaches to glacier monitoring. This paper provides a comparative analysis of how different types of radar information differ in identifying debris-covered alpine glaciers using machine learning algorithms. Based on Sentinel-1A data, three data suites were designed: A backscattering coefficient (BC)-based data suite, a polarization decomposition parameter (PDP)-based data suite, and an interference coherence coefficient (ICC)-based data suite. Four glaciers with very different orientations in different climatic zones of the Tibetan Plateau were selected and classified using an integrated machine learning classification approach. The results showed that: (1) The boosted trees and subspace k-nearest neighbor algorithms were optimal and robust; and (2) the PDP suite (63.41–99.57%) and BC suite (55.85–99.94%) both had good recognition accuracy for all glaciers; notably, the PDP suite exhibited better rock and debris recognition accuracy. We also analyzed the influence of the distribution of glacier surface aspect on the classification accuracy and found that the more asymmetric it was about the sensor orbital plane, the more difficult it was for the BC and PDP suites to recognize the glacier, and a large slope could further reduce the accuracy. Our results suggested that during the inventory or classification of large-scale debris-covered alpine glaciers, priority should be given to polarization decomposition features and elevation information, and it is best to divide the glaciers into multiple subregions based on the spatial relationship between glacier surface aspect and radar beams.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3