Daily Streamflow Forecasting Using Networks of Real-Time Monitoring Stations and Hybrid Machine Learning Methods

Author:

Zhang Yue1ORCID,Zhou Zimo1,Deng Ying1,Pan Daiwei1,Van Griensven Thé Jesse2,Yang Simon X.1ORCID,Gharabaghi Bahram1ORCID

Affiliation:

1. School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada

2. Lakes Environmental, 170 Columbia St. W, Waterloo, ON N2L 3L3, Canada

Abstract

Considering the increased risk of urban flooding and drought due to global climate change and rapid urbanization, the imperative for more accurate methods for streamflow forecasting has intensified. This study introduces a pioneering approach leveraging the available network of real-time monitoring stations and advanced machine learning algorithms that can accurately simulate spatial–temporal problems. The Spatio-Temporal Attention Gated Recurrent Unit (STA-GRU) model is renowned for its computational efficacy in forecasting streamflow events with a forecast horizon of 7 days. The novel integration of the groundwater level, precipitation, and river discharge as predictive variables offers a holistic view of the hydrological cycle, enhancing the model’s accuracy. Our findings reveal that for a 7-day forecasting period, the STA-GRU model demonstrates superior performance, with a notable improvement in mean absolute percentage error (MAPE) values and R-square (R2) alongside reductions in the root mean squared error (RMSE) and mean absolute error (MAE) metrics, underscoring the model’s generalizability and reliability. Comparative analysis with seven conventional deep learning models, including the Long Short-Term Memory (LSTM), the Convolutional Neural Network LSTM (CNNLSTM), the Convolutional LSTM (ConvLSTM), the Spatio-Temporal Attention LSTM (STA-LSTM), the Gated Recurrent Unit (GRU), the Convolutional Neural Network GRU (CNNGRU), and the STA-GRU, confirms the superior predictive power of the STA-LSTM and STA-GRU models when faced with long-term prediction. This research marks a significant shift towards an integrated network of real-time monitoring stations with advanced deep-learning algorithms for streamflow forecasting, emphasizing the importance of spatially and temporally encompassing streamflow variability within an urban watershed’s stream network.

Funder

Natural Sciences and Engineering Research Council of Canada

Lakes Environmental Software Inc.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3