Abstract
In this paper, we derive a four-dimensional ordinary differential equation (ODE) model representing the main interactions between Sox9, Sox10, Olig2 and several miRNAs, which drive the process of (olygodendrocyte) differentiation. We utilize the Lyapunov–Andronov theory to analyze its dynamical properties. Our results indicated that the strength of external signaling (morphogenic gradients shh and bmp), and the transcription rate of mOlig2 explain the existence of stable and unstable (sustained oscillations) behavior in the system. Possible biological implications are discussed.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献