A Deep Learning-Based Approach for a Numerical Investigation of Soil–Water Vertical Infiltration with Physics-Informed Neural Networks

Author:

Yang YutingORCID,Mei GangORCID

Abstract

The infiltration of water into the soil can lead to slope instability, which is one of the important causes of many geological hazards (such as landslides and debris flows). Therefore, the numerical investigation of the soil–water infiltration process provides the prerequisite for the determination of slope stability, which is of great significance for geological hazard prevention. In this study, we propose a deep learning-based approach for a numerical investigation of soil–water vertical infiltration with physics-informed neural networks and perform a comprehensive evaluation and analysis of the soil–water infiltration process in different soil types. In the proposed approach, the partial differential equation for soil–water infiltration is combined with the neural network based on physics-informed neural networks (PINNs) to obtain numerical analysis of the soil–water infiltration process. The results indicate that (1) compared with the traditional numerical method, the PINN-based method for the numerical investigation of soil–water vertical infiltration proposed in this study has a smaller error and can obtain more accurate numerical results. (2) During vertical infiltration of water in the different soil types, the light loam is the fastest, the heavy-loam the second and the medium loam the slowest. medium-loam soils are less susceptible to water infiltration of the three soil types and are more suitable for the filling of artificial slopes and dams. The proposed approach could be employed for the simulation of soil–water infiltration processes, not only for the discrimination of slope stability under rainfall conditions, but also for the selection of artificial slopes and dams to fill soil to prevent slope instability.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3