Inverse analysis of soil hydraulic parameters of layered soil profiles using physics‐informed neural networks with unsaturated water flow models

Author:

Oikawa Koki12ORCID,Saito Hirotaka1ORCID

Affiliation:

1. United Graduate School of Agriculture Tokyo University of Agriculture and Technology Tokyo Japan

2. Japan Society for the Promotion of Science Tokyo Japan

Abstract

AbstractInformation about the spatial distribution of soil hydraulic parameters is necessary for the accurate prediction of soil water flow and the coupled movement of chemicals and heat at the field scale using a process‐based model. Physics‐informed neural networks (PINNs), which can provide physical constraints in deep learning to obtain a mesh‐free solution, can be used to inversely estimate soil hydraulic parameters from less and noisy training data. Previous studies using PINNs have successfully estimated soil hydraulic parameters for homogeneous soil but estimating such parameters of layered soil profiles where the interface depth and the parameters are unknown still has some difficulties. The objective of this study was to develop PINNs to inversely estimate the distribution of soil hydraulic parameters, such as saturated hydraulic conductivity and α and n of the Mualem–van Genuchten model directly within layered soil profiles by predicting changes in the pressure head from training data based on simulation results at given depths during infiltration. The impact of factors affecting PINNs performance, such as the weights assigned to each component of the loss function, time range used in error computations, and number of samples used to assess the physical constraint, was investigated. By assigning a larger weight to the physical constraint and excluding the earlier stage of infiltration in the loss function, the changes in the pressure head and the three soil hydraulic parameter distributions within the layered soil were successfully estimated. The developed PINNs can be further applied to more complex soils and can be improved.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3