Abstract
The degradation of Lithium-ion batteries is usually measured by capacity loss. When batteries deteriorate with usage, the capacities would generally have a declining trend. However, occasionally, considerable capacity regeneration may occur during the degradation process. To better capture the coexistence of capacity loss and regeneration, this paper considers a jump-diffusion model with jumps subject to the exponential distribution. For estimation of model parameters, a jump detection test is first adopted to identify jump arrival times and separate observation data into two series, jump series and diffusion series; then, with the help of probabilistic programming, the Markov chain Monte Carlo sampling algorithm is used to estimate the parameters for the jump and diffusion parts of the degradation model, respectively. The distribution functions of failure time and residual useful life are also approximated by the Monte Carlo simulation approach. Simulation results show the feasibility and good performance of the combined estimation method. Finally, real data analysis indicates that the jump-diffusion process model with the combined estimation method could give a more accurate estimation when predicting the failure time of the battery.
Funder
National Natural Science Foundation of China
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献