An Improved Weighting Coefficient Optimization-Particle Filtering Algorithm Based on Gaussian Degradation Model for Remaining Useful Life Prediction of Lithium-ion Batteries

Author:

Gao HaiyingORCID,Wang Shunli,Qiao Jialu,Yang Xiao,Fernandez Carlos

Abstract

Establishing a capacity degradation model accurately and predicting the remaining useful life of lithium-ion batteries scientifically are of great significance for ensuring safety and reliability throughout the batteries’ whole life cycle. Aiming at the problems of “particle degradation” and “sample poverty” in traditional particle filtering, an improved weighting coefficient optimization - particle filtering algorithm based on a new Gaussian degradation model for the remaining useful life prediction is proposed in this research. The main idea of the algorithm is to weight the selected particles, sort them according to the particle weights, and then select the particles with relatively large weights to estimate the filtering density, thereby improving the filtering accuracy and enhancing the tracking ability. The experimental verification results under the National Aeronautics and Space Administration data show that the improved weighting coefficient optimization - particle filtering algorithm based on the Gaussian degradation model has significantly improved accuracy in predicting the remaining useful life of lithium-ion batteries. The RMSE of the B05 battery can be controlled within 1.40% and 1.17% at the prediction starting point of 40 cycles and 70 cycles respectively, and the RMSE of the B06 battery can be controlled within 2.45% and 1.93% at the prediction starting point of 40 cycles and 70 cycles respectively. It can be seen that the algorithm proposed in this study has strong traceability and convergence ability, which is important for the development of high-reliability battery management systems.

Funder

National Natural Science Foundation of China

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling of transformer oil-paper insulation deterioration based on improved Wiener model;Fourth International Conference on Mechanical, Electronics, and Electrical and Automation Control (METMS 2024);2024-06-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3