Affiliation:
1. Key Laboratory of Meteorological Disaster, Ministry of Education (KLME), Joint International Research Laboratory of Climate and Environment Change (ILCEC), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China
2. Qinghai Institute of Meteorological Sciences, Xining 810001, China
Abstract
Using the ERA5 reanalysis data and trajectory analysis provided by Hysplit4, a comparative analysis was conducted on the primary pathways of air particles and the dominant weather systems in two distinct cases of equatorward and poleward cyclonic Rossby wave-breaking (CWB) events. Subsequently, the characteristics of mass exchange between the stratosphere and troposphere in both CWBs were estimated and discussed. CWB events are frequently associated with the development of an upper front in subtropics and a ridge or blocking in mid-latitudes, leading to a tropopause anomaly characterized by a downward depression in the subtropics and an upward bulge in the mid-latitudes. High potential vorticity (PV) particles exhibit negligible vertical motion and are instead controlled by the circulation of the ridge or blocking, leading to a significant poleward transport. In contrast, low PV particles display noticeable vertical motion, with approximately one fourth of them ascending on the north side of the upper-level jet exit region. After CWB occurrence, approximately 25% of low PV particles moved southward and sank below 500 hPa with the downstream trough’s cold air. Most high PV particles remained in the stratosphere, and low PV particles predominantly remained in the troposphere. Only a small proportion (2% to 6%) of particles underwent stratosphere–troposphere exchange (STE). In equatorward CWB, STE manifested as transport from stratosphere to troposphere, occurring mainly in 24–48 h post breaking with a maximum mass transport of approximately 1.54 × 1013 kg. In poleward CWB, STE involved transport from troposphere to stratosphere, occurring mainly within 0–18 h post breaking with a maximum mass transport of approximately 1.48 × 1013 kg.
Funder
National Key Research and Development Plan of China
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献