Affiliation:
1. Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China
2. Polar and Marine Research Institute, College of Harbor and Coastal Engineering, Jimei University, Xiamen 361021, China
3. Emergency Management School, Nanjing University of Information Science and Technology, Nanjing 210044, China
Abstract
The composition of marine aerosol is quite complex, and its sources are diverse. Across the East China Sea (ECS) and the Yellow Sea (YS), multi-dimensional analysis of marine aerosols was conducted. The characteristics of carbonaceous aerosols and gaseous pollutants were explored through in situ ship-based observation, MERRA-2 reanalysis datasets and TROPOMI data from Sentinel-5P satellite. Black carbon (BC)’s average concentration is 1.35 ± 0.78 μg/m3, with high-value BC observed during the cruise. Through HYSPLIT trajectory analysis, sources of BC were from the northern Eurasian continent, the Shandong Peninsula, the ECS and Northwest Pacific Ocean (NWPO). The transport of marine sources like ship emissions cannot be ignored. According to the absorption Angstrom exponent (AAE), BC originates from biomass burning (BB) in the shortwave band (~370 nm) and from fossil fuel combustion in the longwave band (~660 nm). Organic carbon (OC), sulfate (SO42−) and BC report higher Angstrom exponent (AE) while dust and sea salt reveal lower AE, which can be utilized to classify the aerosols as being fine- or coarse-mode, respectively. OC has the highest AE (ECS: 1.98, YS: 2.01), indicating that anthropogenic activities could be a significant source. The process of biomass burning aerosol (BBA) mixed with sea salt could contribute to the decline in BBA’s AE. Ship emissions may affect the distribution of tropospheric nitrogen dioxide (NO2) in the ECS, especially during the COVID-19 pandemic. Tropospheric NO2 over the YS has the highest value (up to 12 × 1015 molec/cm2). Stratospheric NO2 has a ladder-like distribution from north to south, and the variation gradient was lower than that in the troposphere. Carbon monoxide (CO) accumulates in the south and east of the ECS and the east of the YS, while the variation over the eastern YS is relatively frequent. Seas near the Korean Peninsula have extremely high CO concentration (up to 1.35 × 1017 molec/cm2).
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献