Hyperspectral Super-Resolution Reconstruction Network Based on Hybrid Convolution and Spectral Symmetry Preservation

Author:

Bu Lijing1,Dai Dong1,Zhang Zhengpeng1,Yang Yin23,Deng Mingjun1

Affiliation:

1. School of Automation and Electronic Information, Xiangtan University, Xiangtan 411105, China

2. School of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, China

3. National Center for Applied Mathematics in Hunan Laboratory, Xiangtan 411105, China

Abstract

Hyperspectral images (HSI) have high-dimensional and complex spectral characteristics, with dozens or even hundreds of bands covering the same area of pixels. The rich information of the ground objects makes hyperspectral images widely used in satellite remote sensing. Due to the limitations of remote sensing satellite sensors, hyperspectral images suffer from insufficient spatial resolution. Therefore, utilizing software algorithms to improve the spatial resolution of hyperspectral images has become an urgent problem that needs to be solved. The spatial information and spectral information of hyperspectral images are strongly correlated. If only the spatial resolution is improved, it often damages the spectral information. Inspired by the high correlation between spectral information in adjacent spectral bands of hyperspectral images, a hybrid convolution and spectral symmetry preservation network has been proposed for hyperspectral super-resolution reconstruction. This includes a model to integrate information from neighboring spectral bands to supplement target band feature information. The proposed model introduces flexible spatial-spectral symmetric 3D convolution in the network structure to extract low-resolution and neighboring band features. At the same time, a combination of deformable convolution and attention mechanisms is used to extract information from low-resolution bands. Finally, multiple bands are fused in the reconstruction module, and the high-resolution hyperspectral image containing global information is obtained by Fourier transform upsampling. Experiments were conducted on the indoor hyperspectral image dataset CAVE, the airborne hyperspectral dataset Pavia Center, and Chikusei. In the X2 super-resolution task, the PSNR values achieved on the CAVE, Pavia Center, and Chikusei datasets were 46.335, 36.321, and 46.310, respectively. In the X4 super-resolution task, the PSNR values achieved on the CAVE, Pavia Center, and Chikusei datasets were 41.218, 30.377, and 38.365, respectively. The results show that our method outperforms many advanced algorithms in objective indicators such as PSNR and SSIM while maintaining the spectral characteristics of hyperspectral images.

Funder

the National Key R&D Program of China

Science and Technology Project of Hunan Provincial Natural Resources Department

Scientific Research Project of Natural Resources in Hunan Province

Postgraduate Scientific Research Innovation Project of Hunan Province

Xiang-tan University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3