BACA: Superpixel Segmentation with Boundary Awareness and Content Adaptation

Author:

Liao Nannan,Guo Baolong,Li ChengORCID,Liu Hui,Zhang Chaoyan

Abstract

Superpixels could aggregate pixels with similar properties, thus reducing the number of image primitives for subsequent advanced computer vision tasks. Nevertheless, existing algorithms are not effective enough to tackle computing redundancy and inaccurate segmentation. To this end, an optimized superpixel generation framework termed Boundary Awareness and Content Adaptation (BACA) is presented. Firstly, an adaptive seed sampling method based on content complexity is proposed in the initialization stage. Different from the conventional uniform mesh initialization, it takes content differentiation into consideration to incipiently eliminate the redundancy of seed distribution. In addition to the efficient initialization strategy, this work also leverages contour prior information to strengthen the boundary adherence from whole to part. During the similarity calculation of inspecting the unlabeled pixels in the non-iterative clustering framework, a multi-feature associated measurement is put forward to ameliorate the misclassification of boundary pixels. Experimental results indicate that the two optimizations could generate a synergistic effect. The integrated BACA achieves an outstanding under-segmentation error (3.34%) on the BSD dataset over the state-of-the-art performances with a minimum number of superpixels (345). Furthermore, it is not limited to image segmentation and can be facilitated by remote sensing imaging analysis.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference41 articles.

1. Learning a classification model for segmentation;Ren;Proceedings of the IEEE International Conference on Computer Vision (ICCV),2003

2. Incorporating texture information into region-based unsupervised image segmentation using textural superpixels;Hsu;Proceedings of the IEEE International Conference on Image Processing (ICIP),2014

3. Superpixel segmentation with fully convolutional networks;Yang;Proceedings of the Computer Vision and Pattern Recognition (CVPR),2020

4. Adaptive superpixel segmentation aggregating local contour and texture features;Xiao;Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),2017

5. Robust superpixels using color and contour features along linear path

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3