Spherical Superpixel Segmentation with Context Identity and Contour Intensity

Author:

Liao Nannan1ORCID,Guo Baolong1,He Fangliang1,Li Wenxing1,Li Cheng2ORCID,Liu Hui1

Affiliation:

1. Institute of Intelligent Control and Image Engineering, Xidian University, Xi’an 710071, China

2. Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China

Abstract

Superpixel segmentation is a popular preprocessing tool in the field of image processing. Nevertheless, conventional planar superpixel generation algorithms are inadequately suited for segmenting symmetrical spherical images due to the distinctive geometric differences. In this paper, we present a novel superpixel algorithm termed context identity and contour intensity (CICI) that is specifically tailored for spherical scene segmentation. By defining a neighborhood range and regional context identity, we propose a symmetrical spherical seed-sampling method to optimize both the quantity and distribution of seeds, achieving evenly distributed seeds across the panoramic surface. Additionally, we integrate the contour prior to superpixel correlation measurements, which could significantly enhance boundary adherence across different scales. By implementing the two-fold optimizations on the non-iterative clustering framework, we achieve synergistic CICI to generate higher-quality superpixels. Extensive experiments on the public dataset confirm that our work outperforms the baselines and achieves comparable results with state-of-the-art superpixel algorithms in terms of several quantitative metrics.

Funder

National Natural Science Foundation of China

Photon Plan in Xi’an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3