Leveraging Visual Place Recognition to Improve Indoor Positioning with Limited Availability of WiFi Scans

Author:

Nowicki Michał R.ORCID,Skrzypczyński PiotrORCID

Abstract

WiFi-based fingerprinting is promising for practical indoor localization with smartphones because this technique provides absolute estimates of the current position, while the WiFi infrastructure is ubiquitous in the majority of indoor environments. However, the application of WiFi fingerprinting for positioning requires pre-surveyed signal maps and is getting more restricted in the recent generation of smartphones due to changes in security policies. Therefore, we sought new sources of information that can be fused into the existing indoor positioning framework, helping users to pinpoint their position, even with a relatively low-quality, sparse WiFi signal map. In this paper, we demonstrate that such information can be derived from the recognition of camera images. We present a way of transforming qualitative information of image similarity into quantitative constraints that are then fused into the graph-based optimization framework for positioning together with typical pedestrian dead reckoning (PDR) and WiFi fingerprinting constraints. Performance of the improved indoor positioning system is evaluated on different user trajectories logged inside an office building at our University campus. The results demonstrate that introducing additional sensing modality into the positioning system makes it possible to increase accuracy and simultaneously reduce the dependence on the quality of the pre-surveyed WiFi map and the WiFi measurements at run-time.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3