Snake optimizer LSTM-based UWB positioning method for unmanned crane

Author:

Wang Li,Fan GuangxiaoORCID,Wang QiaoORCID,Li Hui,Huo Junhai,Wei Shibo,Niu Qunfeng

Abstract

Position determination is a critical technical challenge to be addressed in the unmanned and intelligent advancement of crane systems. Traditional positioning techniques, such as those based on magnetic grating or encoders, are limited to measuring the positions of the main carriage and trolley. However, during crane operations, accurately determining the position of the load becomes problematic when it undergoes swinging motions. To overcome this limitation, this paper proposes a novel Ultra-Wide-Band (UWB) positioning method for unmanned crane systems, leveraging the Snake Optimizer Long Short-Term Memory (SO-LSTM) framework. The objective is to achieve real-time and precise localization of the crane hook. The proposed method establishes a multi-base station and multi-tag UWB positioning system using a Time Division Multiple Access (TDMA) combined with Two-Way Ranging (TWR) scheme. This system enables the acquisition of distance measurements between the mobile tag and UWB base stations. Furthermore, the hyperparameters of the LSTM network are optimized using the Snake Optimizer algorithm to enhance the accuracy and effectiveness of UWB positioning estimation. Experimental results demonstrate that the SO-LSTM-based positioning method yields a maximum positioning error of 0.1125 meters and a root mean square error of 0.0589 meters. In comparison to conventional approaches such as the least squares method (LS) and the Kalman filter method (KF), the proposed SO-LSTM-based positioning method significantly reduces the root mean square error (RMSE) by 63.39% and 58.01%, respectively, while also decreasing the maximum positioning error (MPE) by 60.77% and 52.65%.

Funder

Science and Technology Research Project of Henan Province

Henan Provincial Science and Technology Tackling Key Issues (Joint Fund) Project

Science Foundation of Henan University of Technology

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3