Comparison of Three Deoxidation Agents for Ozonated Broths Used in Anaerobic Biotechnological Processes

Author:

Pawlikowska Ewelina,Domanski Jaroslaw,Dziugan Piotr,Berlowska Joanna,Cieciura-Wloch Weronika,Smigielski Krzysztof,Kregiel DorotaORCID

Abstract

Anaerobic fermentation of organic compounds is used in many biotechnological processes and has been the subject of much research. A variety of process conditions and different growth media can be used to obtain microbial metabolites. The media must be free from contamination before fermentation. Sterilization is most often achieved by applying heat or other treatments, such as ozonation. Sterilization of liquid media using ozone can be very beneficial, but this method introduces high concentrations of residual oxygen, which inhibit anaerobic processes. Deoxidation is therefore necessary to remove the oxygen from ozonated broths. This study evaluates the effectiveness of three deoxidation agents for two kinds of fermentation media based on malt or molasses: ultrasound, iron(II) sulfate, and Metschnikowia sp. yeast. The time needed for deoxidation varied, depending on the kind of broth and the deoxidation agent. In general, the dynamics of oxygen removal were faster in malt broth. A comparative analysis showed that yeast biomass was the most effective agent, achieving deoxidation in the shortest time. Moreover, the fully deoxidated broth was supplemented with yeast biomass, which is rich in biogenic substrates, expressed as a protein content of 0.13–0.73 g/L. Application of Metschnikowia sp. may therefore be considered as an effective strategy for simultaneous deoxidation and nutrient supplementation of broths used in anaerobic biotechnological processes.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference40 articles.

1. Melanoidins as major colourant in sugarcane molasses based distillery effluent and its degradation

2. Ozonation as an effective way to stabilize new kinds of fermentation media used in biotechnological production of liquid fuel additives

3. Use of ozone in the food industry

4. Ozone for food decontamination: Theory and applications;Oner,2016

5. Ozone Application in Drinking Waterhttps://www.lenntech.com/library/ozone/drinking/ozone-applications-drinking-water.htm

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3