Multiresolution Aggregation Transformer UNet Based on Multiscale Input and Coordinate Attention for Medical Image Segmentation

Author:

Chen Shaolong,Qiu Changzhen,Yang Weiping,Zhang ZhiyongORCID

Abstract

The latest medical image segmentation methods uses UNet and transformer structures with great success. Multiscale feature fusion is one of the important factors affecting the accuracy of medical image segmentation. Existing transformer-based UNet methods do not comprehensively explore multiscale feature fusion, and there is still much room for improvement. In this paper, we propose a novel multiresolution aggregation transformer UNet (MRA-TUNet) based on multiscale input and coordinate attention for medical image segmentation. It realizes multiresolution aggregation from the following two aspects: (1) On the input side, a multiresolution aggregation module is used to fuse the input image information of different resolutions, which enhances the input features of the network. (2) On the output side, an output feature selection module is used to fuse the output information of different scales to better extract coarse-grained information and fine-grained information. We try to introduce a coordinate attention structure for the first time to further improve the segmentation performance. We compare with state-of-the-art medical image segmentation methods on the automated cardiac diagnosis challenge and the 2018 atrial segmentation challenge. Our method achieved average dice score of 0.911 for right ventricle (RV), 0.890 for myocardium (Myo), 0.961 for left ventricle (LV), and 0.923 for left atrium (LA). The experimental results on two datasets show that our method outperforms eight state-of-the-art medical image segmentation methods in dice score, precision, and recall.

Funder

Grant Guangdong Key Laboratory of Advanced IntelliSense Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3