Characterization of Fine-Scale Turbulence Generated in a Laboratory Orbital Shaker and Its Influence on Skeletonema costatum

Author:

Yu Lin12,Li Yifan2ORCID,Yao Zhongzhi34,You Long2,Jiang Zong-Pei2,Fan Wei12,Pan Yiwen12ORCID

Affiliation:

1. Hainan Institute, Zhejiang University, Sanya 570203, China

2. Ocean College, Zhejiang University, Zhoushan 316021, China

3. Ocean Science and Technology College, Hainan Tropical Ocean University, Sanya 572022, China

4. Yazhou Bay Innovation Institute, Sanya 572022, China

Abstract

Turbulence is one of the ubiquitous aspects of aquatic systems and affects many physical and biological processes. Based on direct velocity measurements and a computational fluid dynamics (CFD) simulation, we characterized the distribution of the turbulent kinetic dissipations rates (ε) in an orbital shaker system within a range of rotation frequencies. CFD was able to estimate the ε distribution in containers accurately, which was confirmed by other two methods and was independent of velocity measurement. The results showed that ε was linearly correlated with the rotational frequencies. Despite the existence of gradients of ε and the fact that a mean circular horizontal flow was formed within the tank, the energy levels of the whole tank varied spatially within an order of magnitude and the ε distributions at different rotational frequencies were similar, suggesting that the ε distribution in the whole tank could be seen as quasi-homogeneous. To investigate the influence of turbulence on algae growth, culture experiments of a typical diatom—Skeletonema costatum were carried out under different turbulence conditions. Our results suggested turbulence mixing promoted nutrient uptake and growth of Skeletonema costatum, which could be attributed to the break of the diffusion-limited resource concentration boundary layer surrounding phytoplankton.

Funder

the National Natural Science Foundation of China

the Science and Technology Program of Zhoushan City

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference62 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3