The effects of turbulence on the growth of three different diatom species

Author:

Liu Yijing,Yu Lin,Yao Zhongzhi,Shen Yunwen,Pan Yiwen

Abstract

The effects of turbulence on phytoplankton growth have received considerable attentions. However, the complexity of turbulence poses a significant challenge to its systematic characterization in the laboratory, resulting in relatively limited data on the effects of turbulence on several algal species. Here, a laboratory turbulence simulation system was set up to systematically investigate the growth of three common diatom species (Thalassiosira pseudonana, Skeletonema costatum, and Phaeodactylum tricornutum) under stationary and turbulent conditions (at 60, 120, 180 rpm), and measurements were taken for the algal biomass, algal photosynthetic activity, and nutrients consumption. By comparing the growth of three algae species under different turbulence exposure intensities, this study found that different algae exhibit varying sensitivities to turbulence, and therefore have different shear thresholds. Meanwhile, cell morphology is the key factor influencing the different shear threshold values observed in the three diatom species. Additionally, turbulence could impact algal aggregation and light availability, and dramatically improve nutrient uptake by phytoplankton. Our study will provides theoretical support for future endeavors in using turbulence to cultivate phytoplankton or combat algal blooms.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3