Three-Dimensional Direct Numerical Simulations of a Yawed Square Cylinder in Steady Flow

Author:

Lou Xiaofan,Sun ChenlinORCID,Jiang Hongyi,Zhu HongjunORCID,An HongweiORCID,Zhou TongmingORCID

Abstract

The effects of yaw angle on wake characteristics of a stationary square cylinder were investigated in terms of the hydrodynamic forces, the vortex shedding frequency, and the vortical structures using direct numerical simulations (DNS) at a Reynolds number of 1000. In total, four yaw angles, namely, α = 0°, 15°, 30°, and 45°, were considered. The three-dimensional (3D) Navier–Stokes equations were solved directly using the finite volume method in OpenFOAM. It was found that the first-order statistics of the drag coefficient and the Strouhal number satisfied the independence principle (IP) closely. However, the second-order statistics of the drag and lift coefficients deviated apparently from the IP for α ≥ 25°. The iso-surfaces of the spanwise vorticity gradually disorganized and the magnitudes of the spanwise vorticity contour decreased as the yaw angle α was increased from 0° to 45°. By contrast, the streamwise vorticity iso-surfaces were found to become more organized and the magnitudes of the spanwise velocity contour became larger as a result of the increase in yaw angle, indicating the impairment of the quasi-two-dimensionality and the enhancement of the three-dimensionality of the wake flow. Extensive comparisons were also made with previous DNS results for a yawed circular cylinder, and both similarities and differences between these two kinds of cylinder wakes are discussed.

Funder

National Natural Science Foundation of China

Australian Research Council

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3