Abstract
The effects of yaw angle on wake characteristics of a stationary square cylinder were investigated in terms of the hydrodynamic forces, the vortex shedding frequency, and the vortical structures using direct numerical simulations (DNS) at a Reynolds number of 1000. In total, four yaw angles, namely, α = 0°, 15°, 30°, and 45°, were considered. The three-dimensional (3D) Navier–Stokes equations were solved directly using the finite volume method in OpenFOAM. It was found that the first-order statistics of the drag coefficient and the Strouhal number satisfied the independence principle (IP) closely. However, the second-order statistics of the drag and lift coefficients deviated apparently from the IP for α ≥ 25°. The iso-surfaces of the spanwise vorticity gradually disorganized and the magnitudes of the spanwise vorticity contour decreased as the yaw angle α was increased from 0° to 45°. By contrast, the streamwise vorticity iso-surfaces were found to become more organized and the magnitudes of the spanwise velocity contour became larger as a result of the increase in yaw angle, indicating the impairment of the quasi-two-dimensionality and the enhancement of the three-dimensionality of the wake flow. Extensive comparisons were also made with previous DNS results for a yawed circular cylinder, and both similarities and differences between these two kinds of cylinder wakes are discussed.
Funder
National Natural Science Foundation of China
Australian Research Council
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献