Wake Flow of Single and Multiple Yawed Cylinders

Author:

Thakur A.1,Liu X.1,Marshall J. S.1

Affiliation:

1. Department of Mechanical and Industrial Engineering and IIHR—Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242 Phone: (319) 335-5817, Fax: (319) 335-5669

Abstract

An experimental and computational study is performed of the wake flow behind a single yawed cylinder and a pair of parallel yawed cylinders placed in tandem. The experiments are performed for a yawed cylinder and a pair of yawed cylinders towed in a tank. Laser-induced fluorescence is used for flow visualization and particle-image velocimetry is used for quantitative velocity and vorticity measurement. Computations are performed using a second-order accurate block-structured finite-volume method with periodic boundary conditions along the cylinder axis. Results are applied to assess the applicability of a quasi-two-dimensional approximation, which assumes that the flow field is the same for any slice of the flow over the cylinder cross section. For a single cylinder, it is found that the cylinder wake vortices approach a quasi-two-dimensional state away from the cylinder upstream end for all cases examined (in which the cylinder yaw angle covers the range 0⩽ϕ⩽60°). Within the upstream region, the vortex orientation is found to be influenced by the tank side-wall boundary condition relative to the cylinder. For the case of two parallel yawed cylinders, vortices shed from the upstream cylinder are found to remain nearly quasi-two-dimensional as they are advected back and reach within about a cylinder diameter from the face of the downstream cylinder. As the vortices advect closer to the cylinder, the vortex cores become highly deformed and wrap around the downstream cylinder face. Three-dimensional perturbations of the upstream vortices are amplified as the vortices impact upon the downstream cylinder, such that during the final stages of vortex impact the quasi-two-dimensional nature of the flow breaks down and the vorticity field for the impacting vortices acquire significant three-dimensional perturbations. Quasi-two-dimensional and fully three-dimensional computational results are compared to assess the accuracy of the quasi-two-dimensional approximation in prediction of drag and lift coefficients of the cylinders.

Publisher

ASME International

Subject

Mechanical Engineering

Reference24 articles.

1. Bursnall, W. J., and Loftin, L. K., 1951, “Experimental Investigation of the Pressure Distribution About a Yawed Circular Cylinder in the Critical Reynolds Number Range,” NACA TN 2463.

2. Friehe, C., and Schwarz, W. H., 1960, “Deviations from the Cosine Law for Yawed Cylindrical Anemometer Sensors,” J. Appl. Mech., 35, 655–662.

3. Gatto, A., Ahmed, N. A., and Archer, R. D., 2000, “Investigation of Upstream End Effect on the Flow Characteristics of a Yawed Circular Cylinders,” Aeronaut. J., 104, 125–128.

4. Hanson, A. R. , 1966, “Vortex Shedding from Yawed Cylinders,” AIAA J., 4, 738–740.

5. King, R. , 1977, “Vortex Excited Oscillations of Yawed Circular Cylinders,” J. Fluids Eng., 99, 495–502.

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3