Prediction Method for Ocean Wave Height Based on Stacking Ensemble Learning Model

Author:

Zhan Yu,Zhang Huajun,Li Jianhao,Li Gen

Abstract

Wave heights are important factors affecting the safety of maritime navigation. This study proposed a stacking ensemble learning method to improve the prediction accuracy of wave heights. We analyzed the correlation between wave heights and other oceanic hydrological features, according to eleven features, such as measurement time, horizontal velocity, temperature, and pressure, as the model inputs. A fusion model consisting of two layers was established according to the principle of stacking ensemble learning. The first layer used the extreme gradient boosting algorithm, a light gradient boosting machine, random forest, and adaptive boosting to determine the deep relations between the wave heights and the input features. The second layer used a linear regression model to fit the relation between the first layer outputs and the actual wave heights, using the data from the four models of the first layer. The fusion model was trained based on the 5-fold cross-verification algorithm. This paper used real data to test the performances of the proposed fusion model, and the results showed that the mean absolute error and the mean squared error of the fusion model were at least 35.79% and 50.52% better than those of the four models.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference41 articles.

1. Towards the “Blue Water Navy”;Liu;Xinmin Weekly,2017

2. The Design of Regional Cultural Service of the Maritime Silk Road Based on Symbolic Semantics

3. China’s 21st century maritime silk road: Challenges and opportunities to coastal livelihoods in ASEAN countries

4. The Impact of Major Maritime Accidents on the Development of International Regulations Concerning Safety of Navigation and Protection of the Environment;Daniel;Sci. J. Pol. Nav. Acad.,2017

5. Organizational-Economic Aspects of the Implementation of International Standards for Safety of Maritime Navigation;Poznanska;Probl. Ekon.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3