Author:
Zhan Yu,Zhang Huajun,Li Jianhao,Li Gen
Abstract
Wave heights are important factors affecting the safety of maritime navigation. This study proposed a stacking ensemble learning method to improve the prediction accuracy of wave heights. We analyzed the correlation between wave heights and other oceanic hydrological features, according to eleven features, such as measurement time, horizontal velocity, temperature, and pressure, as the model inputs. A fusion model consisting of two layers was established according to the principle of stacking ensemble learning. The first layer used the extreme gradient boosting algorithm, a light gradient boosting machine, random forest, and adaptive boosting to determine the deep relations between the wave heights and the input features. The second layer used a linear regression model to fit the relation between the first layer outputs and the actual wave heights, using the data from the four models of the first layer. The fusion model was trained based on the 5-fold cross-verification algorithm. This paper used real data to test the performances of the proposed fusion model, and the results showed that the mean absolute error and the mean squared error of the fusion model were at least 35.79% and 50.52% better than those of the four models.
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Reference41 articles.
1. Towards the “Blue Water Navy”;Liu;Xinmin Weekly,2017
2. The Design of Regional Cultural Service of the Maritime Silk Road Based on Symbolic Semantics
3. China’s 21st century maritime silk road: Challenges and opportunities to coastal livelihoods in ASEAN countries
4. The Impact of Major Maritime Accidents on the Development of International Regulations Concerning Safety of Navigation and Protection of the Environment;Daniel;Sci. J. Pol. Nav. Acad.,2017
5. Organizational-Economic Aspects of the Implementation of International Standards for Safety of Maritime Navigation;Poznanska;Probl. Ekon.,2016
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献