Machine Learning-Based Forecasting of Temperature and Solar Irradiance for Photovoltaic Systems

Author:

Tercha Wassila1,Tadjer Sid Ahmed1ORCID,Chekired Fathia2ORCID,Canale Laurent3ORCID

Affiliation:

1. Electrification of Industrial Enterprises Laboratory, University of Boumerdes, Boumerdes 35000, Algeria

2. Unité de Développement des Équipements Solaires, UDES, Centre de Développement des Energies Renouvelables, CDER, Tipaza 42004, Algeria

3. CNRS, LAPLACE Laboratory, UMR 5213, 31062 Toulouse, France

Abstract

The integration of photovoltaic (PV) systems into the global energy landscape has been boosted in recent years, driven by environmental concerns and research into renewable energy sources. The accurate prediction of temperature and solar irradiance is essential for optimizing the performance and grid integration of PV systems. Machine learning (ML) has become an effective tool for improving the accuracy of these predictions. This comprehensive review explores the pioneer techniques and methodologies employed in the field of ML-based forecasting of temperature and solar irradiance for PV systems. This article presents a comparative study between various algorithms and techniques commonly used for temperature and solar radiation forecasting. These include regression models such as decision trees, random forest, XGBoost, and support vector machines (SVM). The beginning of this article highlights the importance of accurate weather forecasts for the operation of PV systems and the challenges associated with traditional meteorological models. Next, fundamental concepts of machine learning are explored, highlighting the benefits of improved accuracy in estimating the PV power generation for grid integration.

Funder

Directorate General for Scientific Research and technological Development DGRSDT

Ministry of Higher Education and Scientific Research

PHC Maghreb international research program

Mastering Efficient Lighting In North Africa

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3