A Comparative Study of Machine Learning Models for Predicting Meteorological Data in Agricultural Applications

Author:

Šuljug Jelena1,Spišić Josip1,Grgić Krešimir1,Žagar Drago1

Affiliation:

1. Faculty of Electrical Engineering, Computer Science and Information Technology Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia

Abstract

This study aims to address the challenges of climate change, which has led to extreme temperature events and reduced rainfall, using Internet of Things (IoT) technologies. Specifically, we monitored the effects of drought on maize crops in the Republic of Croatia. Our research involved analyzing an extensive dataset of 139,965 points of weather data collected during the summer of 2022 in different areas with 18 commercial sensor nodes using the Long-Range Wide Area Network (LoRaWAN) protocol. The measured parameters include temperature, humidity, solar irradiation, and air pressure. Newly developed maize-specific predictive models were created, taking into account the impact of urbanization on the agrometeorological parameters. We also categorized the data into urban, suburban, and rural segments to fill gaps in the existing literature. Our approach involved using 19 different regression models to analyze the data, resulting in four regional models per parameter and four general models that apply to all areas. This comprehensive analysis allowed us to select the most effective models for each area, improving the accuracy of our predictions of agrometeorological parameters and helping to optimize maize yields as weather patterns change. Our research contributes to the integration of machine learning and AI into the Internet of Things for agriculture and provides innovative solutions for predictive analytics in crop production. By focusing on solar irradiation in addition to traditional weather parameters and accounting for geographical differences, our models provide a tool to address the pressing issue of agricultural sustainability in the face of impending climate change. In addition, our results have practical implications for resource management and efficiency improvement in the agricultural sector.

Publisher

MDPI AG

Reference50 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3