Deep Deterministic Policy Gradient-Based Autonomous Driving for Mobile Robots in Sparse Reward Environments

Author:

Park Minjae,Lee Seok YoungORCID,Hong Jin Seok,Kwon Nam Kyu

Abstract

In this paper, we propose a deep deterministic policy gradient (DDPG)-based path-planning method for mobile robots by applying the hindsight experience replay (HER) technique to overcome the performance degradation resulting from sparse reward problems occurring in autonomous driving mobile robots. The mobile robot in our analysis was a robot operating system-based TurtleBot3, and the experimental environment was a virtual simulation based on Gazebo. A fully connected neural network was used as the DDPG network based on the actor–critic architecture. Noise was added to the actor network. The robot recognized an unknown environment by measuring distances using a laser sensor and determined the optimized policy to reach its destination. The HER technique improved the learning performance by generating three new episodes with normal experience from a failed episode. The proposed method demonstrated that the HER technique could help mitigate the sparse reward problem; this was further corroborated by the successful autonomous driving results obtained after applying the proposed method to two reward systems, as well as actual experimental results.

Funder

National Research Foundation of Korea

Yeungnam University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3