Optimizing Thermoelectric Performance of Hybrid Crystals Bi2O2Se1−xTex in the Bi2O2X System

Author:

Xie Fan1,Ma Zhiyao1,Zhou Jian1

Affiliation:

1. School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Laboratory of Advanced Electronics and Fiber Materials, Sun Yat-Sen University, Guangzhou 510275, China

Abstract

In addressing the global need for sustainable energy conversion, this study presents a breakthrough in thermoelectric materials research by optimizing the Bi2O2Se1–xTex system in the Bi2O2Se/Bi2O2Te pseudobinary series. Leveraging the principles of innovative transport mechanisms and defect engineering, we introduce tellurium (Te) doping into Bi2O2Se to enhance its thermoelectric properties synergistically. With the help of various advanced characterization tools such as XRD, SEM, TEM, XPS, FTIR, TGA, LFA, and DSC, combined with relevant resistance and density measurement techniques, we conducted an in-depth exploration of the complex interactions between various factors within thermoelectric materials. We recognize that the balance and synergy of these factors in the thermoelectric conversion process are crucial to achieving efficient energy conversion. Through systematic research, we are committed to revealing the mechanisms of these interactions and providing a solid scientific foundation for the optimal design and performance enhancement of thermoelectric materials. Finally, the advantage coefficient (ZT) of the thermoelectric material has been significantly improved. The crystallographic analysis confirms the formation of a continuous series of mixed crystals with varying Te concentrations, adhering to Vegard’s law and exhibiting significant improvements in electrical and thermal conductivities. The Bi2O2Se1–xTex crystals, particularly the Bi2O2Se0.6Te0.4 composition, demonstrate a peak ZT of 0.86 at 373 K. This achievement aligns with recent advancements in defect-enabled mechanisms and band convergence and sets a new standard for high-performance thermoelectrics. The study’s findings contribute significantly to the ongoing quest for efficient thermal-to-electrical energy conversion, offering a promising avenue for future sustainable energy technologies.

Funder

The Natural Science Foundation of Guangdong Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3