Electromagnetic Field Drives the Bioelectrocatalysis of γ-Fe2O3-Coated Shewanella putrefaciens CN32 to Boost Extracellular Electron Transfer

Author:

Wang Xiaohai1,Shi Zhuanzhuan1,Wang Zhikai1,Wu Xiaoshuai1

Affiliation:

1. Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China

Abstract

The microbial hybrid system modified by magnetic nanomaterials can enhance the interfacial electron transfer and energy conversion under the stimulation of a magnetic field. However, the bioelectrocatalytic performance of a hybrid system still needs to be improved, and the mechanism of magnetic field-induced bioelectrocatalytic enhancements is still unclear. In this work, γ-Fe2O3 magnetic nanoparticles were coated on a Shewanella putrefaciens CN32 cell surface and followed by placing in an electromagnetic field. The results showed that the electromagnetic field can greatly boost the extracellular electron transfer, and the oxidation peak current of CN32@γ-Fe2O3 increased to 2.24 times under an electromagnetic field. The enhancement mechanism is mainly due to the fact that the surface modified microorganism provides an elevated contact area for the high microbial catalytic activity of the outer cell membrane’s cytochrome, while the magnetic nanoparticles provide a networked interface between the cytoplasm and the outer membrane for boosting the fast multidimensional electron transport path in the magnetic field. This work sheds fresh scientific light on the rational design of magnetic-field-coupled electroactive microorganisms and the fundamentals of an optimal interfacial structure for a fast electron transfer process toward an efficient bioenergy conversion.

Funder

Natural Science Research Foundation of Jiangsu Higher Education Institutions

Natural Science Foundation of Suzhou University of Science and Technology, Suzhou Foreign Academician Workstation

Open Foundation of the Jiangsu Key Laboratory for Biochip and Medical Diagnosis, the Collaborative Innovation Center of Water Treatment Technology and Material

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3