Affiliation:
1. Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
Abstract
The microbial hybrid system modified by magnetic nanomaterials can enhance the interfacial electron transfer and energy conversion under the stimulation of a magnetic field. However, the bioelectrocatalytic performance of a hybrid system still needs to be improved, and the mechanism of magnetic field-induced bioelectrocatalytic enhancements is still unclear. In this work, γ-Fe2O3 magnetic nanoparticles were coated on a Shewanella putrefaciens CN32 cell surface and followed by placing in an electromagnetic field. The results showed that the electromagnetic field can greatly boost the extracellular electron transfer, and the oxidation peak current of CN32@γ-Fe2O3 increased to 2.24 times under an electromagnetic field. The enhancement mechanism is mainly due to the fact that the surface modified microorganism provides an elevated contact area for the high microbial catalytic activity of the outer cell membrane’s cytochrome, while the magnetic nanoparticles provide a networked interface between the cytoplasm and the outer membrane for boosting the fast multidimensional electron transport path in the magnetic field. This work sheds fresh scientific light on the rational design of magnetic-field-coupled electroactive microorganisms and the fundamentals of an optimal interfacial structure for a fast electron transfer process toward an efficient bioenergy conversion.
Funder
Natural Science Research Foundation of Jiangsu Higher Education Institutions
Natural Science Foundation of Suzhou University of Science and Technology, Suzhou Foreign Academician Workstation
Open Foundation of the Jiangsu Key Laboratory for Biochip and Medical Diagnosis, the Collaborative Innovation Center of Water Treatment Technology and Material
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献