Long-term operation and dynamic response of dissimilatory nitrate reduction to ammonium process under low-frequency infrared electromagnetic field

Author:

Xie Yuyang,Wang ZhibinORCID,Ismail SherifORCID,Ni Shou-QingORCID

Abstract

AbstractDissimilatory nitrate reduction to ammonium (DNRA) received more attention for its ability to recover ammonium. This study investigated the possibility of low-frequency infrared electromagnetic field (IR-EMF) to improve DNRA. The optimal IR-EMF intensity of 0.04 μT could effectively improve DNRA activity of nonwoven fabric membrane bioreactors. In the long-term operation, the average ammonium conversion efficiency was enhanced by 117.7% and 62.5% under 0.04 μT and 0.06 μT IR-EMF, respectively. The highest nrfA-gene abundance and potential DNRA rate were obtained under 0.04 μT IR-EMF exposure. Bacteroidetes fragilis, Shewanelle oneidensis MR-1, and Thauera sp. RT1901 were selected to investigate the dynamic response of nitrogen transformation and energy metabolism to IR-EMF. The transcriptome sequencing and RT-qPCR results suggested that IR-EMF could enhance both denitrification and DNRA process, mainly by improving ATP synthesis to boost metabolic activity. This study provided an efficient method for the nitrogen recovery via DNRA process by applying IR-EMF.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3