Adaptive Supply Chain: Demand–Supply Synchronization Using Deep Reinforcement Learning

Author:

Kegenbekov Zhandos,Jackson Ilya

Abstract

Adaptive and highly synchronized supply chains can avoid a cascading rise-and-fall inventory dynamic and mitigate ripple effects caused by operational failures. This paper aims to demonstrate how a deep reinforcement learning agent based on the proximal policy optimization algorithm can synchronize inbound and outbound flows and support business continuity operating in the stochastic and nonstationary environment if end-to-end visibility is provided. The deep reinforcement learning agent is built upon the Proximal Policy Optimization algorithm, which does not require hardcoded action space and exhaustive hyperparameter tuning. These features, complimented with a straightforward supply chain environment, give rise to a general and task unspecific approach to adaptive control in multi-echelon supply chains. The proposed approach is compared with the base-stock policy, a well-known method in classic operations research and inventory control theory. The base-stock policy is prevalent in continuous-review inventory systems. The paper concludes with the statement that the proposed solution can perform adaptive control in complex supply chains. The paper also postulates fully fledged supply chain digital twins as a necessary infrastructural condition for scalable real-world applications.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference34 articles.

1. Deep Learning;Goodfellow,2016

2. Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics

3. Deep traffic: Crowdsourced hyperparameter tuning of deep reinforcement learning systems for multi-agent dense traffic navigation;Fridman;arXiv,2018

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3