Detecting Gait Events from Accelerations Using Reservoir Computing

Author:

Chiasson-Poirier Laurent,Younesian HananehORCID,Turcot KatiaORCID,Sylvestre JulienORCID

Abstract

Segmenting the gait cycle into multiple phases using gait event detection (GED) is a well-researched subject with many accurate algorithms. However, the algorithms that are able to perform accurate and robust GED for real-life environments and physical diseases tend to be too complex for their implementation on simple hardware systems limited in computing power and memory, such as those used in wearable devices. This study focuses on a numerical implementation of a reservoir computing (RC) algorithm called the echo state network (ESN) that is based on simple computational steps that are easy to implement on portable hardware systems for real-time detection. RC is a neural network method that is widely used for signal processing applications and uses a fast-training method based on a ridge regression adapted to the large quantity and variety of IMU data needed to use RC in various real-life environment GED. In this study, an ESN was used to perform offline GED with gait data from IMU and ground force sensors retrieved from three databases for a total of 28 healthy adults and 15 walking conditions. Our main finding is that despite its low complexity, ESN is robust for GED, with performance comparable to other state-of-the-art algorithms. Our results show the ESN is robust enough to obtain good detection results in all conditions if the algorithm is trained with variable data that match those conditions. The distribution of the mean absolute errors (MAE) between the detection times from the ESN and the force sensors were between 40 and 120 ms for 6 defined gait events (95th percentile). We compared our ESN with four different state-of-the-art algorithms from the literature. The ESN obtained a MAE not more than 10 ms above three other reference algorithms for normal walking indoor and outdoor conditions and yielded the 2nd lowest MAE and the 2nd highest true positive rate and specificity when applied to outdoor walking and running conditions. Our work opens the door to using the ESN as a GED for applications in wearable sensors for long-term patient monitoring.

Funder

New Frontier

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3