Characteristic Changes of the Stance-Phase Plantar Pressure Curve When Walking Uphill and Downhill: Cross-Sectional Study (Preprint)

Author:

Wolff ChristianORCID,Steinheimer PatrickORCID,Warmerdam ElkeORCID,Dahmen TimORCID,Slusallek PhilippORCID,Schlinkmann ChristianORCID,Chen FeiORCID,Orth MarcelORCID,Pohlemann TimORCID,Ganse BergitaORCID

Abstract

BACKGROUND

Monitoring of gait patterns by insoles is popular to study behavior and activity in the daily life of people and throughout the rehabilitation process of patients. Live data analyses may improve personalized prevention and treatment regimens, as well as rehabilitation. The M-shaped plantar pressure curve during the stance phase is mainly defined by the loading and unloading slope, 2 maxima, 1 minimum, as well as the force during defined periods. When monitoring gait continuously, walking uphill or downhill could affect this curve in characteristic ways.

OBJECTIVE

For walking on a slope, typical changes in the stance phase curve measured by insoles were hypothesized.

METHODS

In total, 40 healthy participants of both sexes were fitted with individually calibrated insoles with 16 pressure sensors each and a recording frequency of 100 Hz. Participants walked on a treadmill at 4 km/h for 1 minute in each of the following slopes: −20%, −15%, −10%, −5%, 0%, 5%, 10%, 15%, and 20%. Raw data were exported for analyses. A custom-developed data platform was used for data processing and parameter calculation, including step detection, data transformation, and normalization for time by natural cubic spline interpolation and force (proportion of body weight). To identify the time-axis positions of the desired maxima and minimum among the available extremum candidates in each step, a Gaussian filter was applied (σ=3, kernel size 7). Inconclusive extremum candidates were further processed by screening for time plausibility, maximum or minimum pool filtering, and monotony. Several parameters that describe the curve trajectory were computed for each step. The normal distribution of data was tested by the Kolmogorov-Smirnov and Shapiro-Wilk tests.

RESULTS

Data were normally distributed. An analysis of variance with the gait parameters as dependent and slope as independent variables revealed significant changes related to the slope for the following parameters of the stance phase curve: the mean force during loading and unloading, the 2 maxima and the minimum, as well as the loading and unloading slope (all <i>P</i>&lt;.001). A simultaneous increase in the loading slope, the first maximum and the mean loading force combined with a decrease in the mean unloading force, the second maximum, and the unloading slope is characteristic for downhill walking. The opposite represents uphill walking. The minimum had its peak at horizontal walking and values dropped when walking uphill and downhill alike. It is therefore not a suitable parameter to distinguish between uphill and downhill walking.

CONCLUSIONS

While patient-related factors, such as anthropometrics, injury, or disease shape the stance phase curve on a longer-term scale, walking on slopes leads to temporary and characteristic short-term changes in the curve trajectory.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3