Damage Monitoring of Engineered Cementitious Composite Beams Reinforced with Hybrid Bars Using Piezoceramic-Based Smart Aggregates

Author:

Qian HuiORCID,Zhang Yuqing,Li Yuechang,Gao Jundong,Song Jianxue

Abstract

In order to explore the crack development mechanism and damage self-repairing capacity of ECC beams reinforced with hybrid bars, the smart aggregate-based active sensing approach were herein adopted to conduct damage monitoring of ECC beams under cyclic loading. A total of six beams, including five engineered cementitious composite (ECC) beams reinforced with different bars and one reinforcement concrete counterpart, were fabricated and tested under cyclic loading. The ultimate failure modes and hysteresis curves were obtained and discussed herein, demonstrating the multiple crack behavior and excellent ductility of ECC material. The damage of the tested beams was monitored by smart aggregate-based (SA) active sensing method, in which two SAs pasted on both beam ends were used as actuator and sensor, respectively. The time domain analysis, wavelet packet-based energy analysis and wavelet packet-based damage index analysis were performed to quantitatively evaluate the crack development. To evaluate the self-repairing capacity of the beams, a self-repairing index defined by the difference of damage index at loading and unloading peak points was proposed. The results in time domain and wavelet packed analysis were in close agreement with the observed crack development, revealing the feasibility of smart aggregate-based active sensing approach in damage detection for ECC beams. Especially, the proposed damage self-repairing index can describe the same structural re-centering phenomena with the test results, showing the proposed index can be used to evaluate the damage self-repairing capacity.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3