Bond slip detection of shear interfaces for GFRP and UHPC composite members using piezoceramic smart aggregates

Author:

Qian HuiORCID,Li Fei,Gao JundongORCID,Liang Penghui,Zhang PuORCID

Abstract

Abstract Ultra-high performance concrete (UHPC) and fiber-reinforced polymer (FRP) have been more and more widely used in large-scale constructions. Using FRP at the shear and bending section of concrete can increase the strength and fatigue resistance of the concrete members. However, the performance of FRP-UHPC composite structure depends mainly on the interface connection between FRP and UHPC. Therefore, to prevent the bond-slip of FRP-UHPC composite structure from causing destructive structural damage, it is essential to detect the bond-slip of interfaces for providing early warning of composite structures. Glass fiber reinforced polymer (GFRP) and concrete can be combined through several interface bond methods to form innovative composite structures. This study experimentally investigated the bond-slip detection of the shear interface of GFRP-concrete composite members using piezoceramic smart aggregates (SAs). Two groups of eight GFRP-concrete composite members with different bond methods were fabricated and tested. Both UHPC and regular concrete materials were considered. Six kinds of bond types were employed, including bolted, epoxy bonded, bonded by GFRP stay-in-plane form and their combinations. The push-out experimental results were analyzed in detail, involving the load versus slip displacement curves and failure modes. Meanwhile, the bond-slip between GFRP and UHPC interfaces was detected by the SA-based active sensing approach. A pair of SAs attached at both sides of each composite member was employed as an actuator and a sensor, respectively. The wavelet packet-based analyses, including the energy indices and damage index, were applied. Using an SA-based active sensing approach, the initiation and development of bond-slip for GFRP and UHPC composite members with different bond methods were successfully captured and quantitatively evaluated.

Funder

Key Scientific Research Project in University of Henan Province

Program for Innovative Research Team (in Science and Technology) in University of Henan Province

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3