Incremental Learning for Classification of Unstructured Data Using Extreme Learning Machine

Author:

Madhusudhanan Sathya,Jaganathan SureshORCID,L S Jayashree

Abstract

Unstructured data are irregular information with no predefined data model. Streaming data which constantly arrives over time is unstructured, and classifying these data is a tedious task as they lack class labels and get accumulated over time. As the data keeps growing, it becomes difficult to train and create a model from scratch each time. Incremental learning, a self-adaptive algorithm uses the previously learned model information, then learns and accommodates new information from the newly arrived data providing a new model, which avoids the retraining. The incrementally learned knowledge helps to classify the unstructured data. In this paper, we propose a framework CUIL (Classification of Unstructured data using Incremental Learning) which clusters the metadata, assigns a label for each cluster and then creates a model using Extreme Learning Machine (ELM), a feed-forward neural network, incrementally for each batch of data arrived. The proposed framework trains the batches separately, reducing the memory resources, training time significantly and is tested with metadata created for the standard image datasets like MNIST, STL-10, CIFAR-10, Caltech101, and Caltech256. Based on the tabulated results, our proposed work proves to show greater accuracy and efficiency.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3