Data Integration from Heterogeneous Control Levels for the Purposes of Analysis within Industry 4.0 Concept

Author:

Horak TiborORCID,Strelec PeterORCID,Kebisek MichalORCID,Tanuska PavolORCID,Vaclavova AndreaORCID

Abstract

Small- and medium-sized manufacturing companies must adapt their production processes more quickly. The speed with which enterprises can apply a change in the context of data integration and historicization affects their business. This article presents the possibilities of implementing the integration of control processes using modern technologies that will enable the adaptation of production lines. Integration using an object-oriented approach is suitable for complex tasks. Another approach is data integration using the entity referred to as tagging (TAG). Tagging is essential to apply for fast adaptation and modification of the production process. The advantage is identification, easier modification, and generation of data structures where basic entities include attributes, topics, personalization, locale, and APIs. This research proposes a model for integrating manufacturing enterprise data from heterogeneous levels of management. As a result, the model and the design procedure for data integrating production lines can efficiently adapt production changes.

Funder

Scientific Grant Agency of the Ministry of Education, Science, Research, and Sport of the Slovak Republic and the Slovak Academy of Sciences

European Regional Development Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference48 articles.

1. TPC-DI: The first industry benchmark for data integration;Poess;Proc. VLDB Endow.,2014

2. Gölzer, P., Patrick, C., and Michael, A. (2022, September 19). Data Processing Requirements of Industry 4.0-Use Cases for Big Data Applications. Available online: https://aisel.aisnet.org/ecis2015_rip/61/.

3. IoT-based big data storage systems in cloud computing: Perspectives and challenges;Cai;IEEE Internet Things J.,2016

4. Automatic classification of data-warehouse-data for information lifecycle management using machine learning techniques;Nissen;Inf. Syst. Front.,2017

5. hCoCena: Horizontal integration and analysis of transcriptomics datasets;Oestreich;Bioinformatics,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3