Evapotranspiration Based Irrigation Trials Examine Water Requirement, Nitrogen Use, and Yield of Romaine Lettuce in the Salinas Valley

Author:

Cahn Michael D.,Johnson Lee F.,Benzen Sharon D.

Abstract

Cool season vegetables require adequate soil moisture to assure that maximum yield and quality are achieved. On California’s central coast, where the majority of cool season vegetables are produced in the US, long-term overpumping of irrigation water has reduced groundwater levels and led to environmental degradation. Two evapotranspiration (ET) based irrigation field trials were performed near Salinas CA (USA) to determine if ET-based irrigation scheduling could conserve water while producing romaine lettuce (cv. Sun Valley) of commercially viable yield. Sprinklers were used for seed germination and crop establishment. Four drip irrigation treatments were then imposed using a randomized complete block design with six replications. The CropManage decision-support model was used to estimate the full (100%) crop water requirement based mainly on ET replacement. Other treatments included 50% 75% and 150% of the full water requirement. The 100% treatment received 185 mm of water in 2015 and 247 mm in 2016, both of which were well below prior guidance and grower reports. Yields from the 100% and 150% treatments were not significantly different and were similar to industry average, while yields were significantly lower for the 50% and 75% treatments. The 100% treatment had the highest water use efficiency, and the 100% and 150% treatments together had the highest nitrogen recovery efficiency. Irrigation of romaine near the 100% ET replacement level can potentially reduce environmental impacts associated with nitrate leaching and surface runoff.

Funder

California Dept. Food & Agriculture

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Reference38 articles.

1. Vegetable Irrigation;Shock,2007

2. Sustainable Groundwater Management Act (SGMA);California Department of Water Resources

3. Addressing Nitrate in California’s Drinking Water with a Focus on Tulare Lake Basin and Salinas Valley Groundwater;Harter,2012

4. General Waste Discharge Requirements for Discharges from Irrigated Lands. Attachment A: Findings;Central Coast Regional Water Quality Control Board,2021

5. Nitrogen Dynamics of Cole Crop Production: Implications for Fertility Management and Environmental Protection

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3