Supplementary Light with Increased Blue Fraction Accelerates Emergence and Improves Development of the Inflorescence in Aechmea, Guzmania and Vriesea

Author:

Javadi Asayesh ElaheORCID,Aliniaeifard SasanORCID,Askari NaserORCID,Roozban Mahmood Reza,Sobhani Mohammadhadi,Tsaniklidis GeorgiosORCID,Woltering Ernst J.ORCID,Fanourakis DimitriosORCID

Abstract

In protected cultivation, increasing the light level via supplementary lighting (SL) is critical to improve external quality, especially in periods with low light availability. Despite wide applications, the effect of light quality remains understated. In this study, the effect of SL quality and nutrient solution electrical conductivity (EC) on growth and flowering of three bromeliad species was investigated. Treatments included solar light, and this supplemented with R90B10 [90% red (R) and 10% blue (B)], R80B20 (80% R and 20% B), and R70B30 (70% R and 30% B). These were combined with an EC of 1 and 2 dS m-l. Irrespective of the light treatment, the higher EC promoted growth, inflorescence emergence, and development in Aechmea fasciata (Lindl.) Baker, whereas adverse effects were noted in Guzmania and Vriesea. The higher EC-induced negative effect in Guzmania and Vriesea was slightly alleviated by SL. With few notable exceptions, SL exerted limited effects on photosynthetic functionality. Depending on the species, SL improved external quality traits. In all species, SL increased root and inflorescence weight and stimulated biomass allocation to generative organs. It also accelerated inflorescence emergence and promoted inflorescence development. In this way, the time to commercial development stage was considerably shortened. These effects were more prominent at R80B20 and R70B30. Under those conditions, for instance, inflorescence emergence occurred 3–5 weeks earlier than in the control, depending on the species. In conclusion, SL with increased B proportion leads to shorter production period owing to faster emergence and improved development of the inflorescence and is recommended for commercial use.

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3