Using a Hybrid Neural Network Model DCNN–LSTM for Image-Based Nitrogen Nutrition Diagnosis in Muskmelon

Author:

Chang LiyingORCID,Li Daren,Hameed Muhammad Khalid,Yin Yilu,Huang Danfeng,Niu Qingliang

Abstract

In precision agriculture, the nitrogen level is significantly important for establishing phenotype, quality and yield of crops. It cannot be achieved in the future without appropriate nitrogen fertilizer application. Moreover, a convenient and real-time advance technology for nitrogen nutrition diagnosis of crops is a prerequisite for an efficient and reasonable nitrogen-fertilizer management system. With the development of research on plant phenotype and artificial intelligence technology in agriculture, deep learning has demonstrated a great potential in agriculture for recognizing nondestructive nitrogen nutrition diagnosis in plants by automation and high throughput at a low cost. To build a nitrogen nutrient-diagnosis model, muskmelons were cultivated under different nitrogen levels in a greenhouse. The digital images of canopy leaves and the environmental factors (light and temperature) during the growth period of muskmelons were tracked and analyzed. The nitrogen concentrations of the plants were measured, we successfully constructed and trained machine-learning- and deep-learning models based on the traditional backpropagation neural network (BPNN), the emerging convolution neural network (CNN), the deep convolution neural network (DCNN) and the long short-term memory (LSTM) for the nitrogen nutrition diagnosis of muskmelon. The adjusted determination coefficient (R2) and mean square error (MSE) between the predicted values and measured values of nitrogen concentration were adopted to evaluate the models’ accuracy. The values were R2 = 0.567 and MSE = 0.429 for BPNN model; R2 = 0.376 and MSE = 0.628 for CNN model; R2 = 0.686 and MSE = 0.355 for deep convolution neural network (DCNN) model; and R2 = 0.904 and MSE = 0.123 for the hybrid model DCNN–LSTM. Therefore, DCNN–LSTM shows the highest accuracy in predicting the nitrogen content of muskmelon. Our findings highlight a base for achieving a convenient, precise and intelligent diagnosis of nitrogen nutrition in muskmelon.

Funder

National Natural Science Foundation of China (NSFC)

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3